

0

Report from 56th American Society of Hematology Annual Meeting and Exposition, San Francisco, CA, USA, Dec 5-9, 2014 - Tomasz Stoklosa

American Society of Hematology Meeting is the not only biggest but one of the most prestigious hematological meeting. This year, 56th ASH Meeting in San Francisco gathered more than 26 thousands participants from all over the world, including hematologists, scientists and corporate partners. Dr Tomasz Stoklosa had a pleasure to present data during oral session entitled: **Chromosomal Rearrangements and DNA repair** chaired by Feyruz V. Rassool, Associate Professor from University of Maryland School of Medicine and Peter D Aplan from National Cancer Institute on Monday, Dec 8th

Title of the talk: <u>Gene Expression and Mutation Analysis (GEMA)</u> <u>–Guided Precision</u> <u>Medicine Targeting PARP1 to Induce Synthetic Lethality in DNA-PK</u> <u>–Deficient Quiescent</u> and BRCA-Deficient Proliferating Leukemia Stem and Progenitor Cells

Authors: Margaret Nieborowska-Skorska¹, Katherine Sullivan¹, Paulina Podszywalow-Bartnicka¹, Grazyna Hoser², Elisabeth Bolton-Gillespie¹, Kimberly Cramer-Morales¹, Artur Slupianek¹, Chun Zhou³, Sabine Cerny-Reiterer⁴, **Tomasz Stoklosa**⁵(presenting author), Stephen M. Sykes³, Peter Valent⁶, Curt I. Civin⁷, Markus Muschen⁸, Mark D. Minden⁹, Kolja Eppert¹⁰ and Tomasz Skorski¹

¹Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, PA; ²Department of Clinical Cytology, Medical Center for Postgraduate Education, Warsaw, Poland; ³Fox Chase Cancer Center, Philadelphia, PA; ⁴Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria; ⁵Department of Immunology, Medical University of Warsaw, Warsaw, Poland; ⁶Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria;⁷Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD; ⁸Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA; ⁹Department of Medicine, University of Toronto, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada;¹⁰Department of Pediatrics, McGill University and Montreal Children's Hospital Research Institute, Montreal, QC, Canada

Dr Stoklosa giving his talk.

From Basic to Translational Research in Oncology

We hypothesize that Gene Expression and Mutation Analysis (GEMA) can identify individual patients with leukemias displaying "spontaneous" and oncogene-induced downregulation of DSB repair genes which will be sensitive to "synthetic lethality" triggered by PARP1i +/-already approved drugs. Leukemia stem cells (LSCs), and especially quiescent LSCs, have a dual role as tumor initiating and therapy-refractory cells. Therefore, even if anti-tumor treatment clears a disease burden consisting mostly of proliferating leukemia progenitor cells (LPCs), it usually fails to eradicate therapy-refractory LSCs and also therapy-resistant LPCs. LSCs, including quiescent LSCs and LPCs accumulate high numbers of spontaneous and drug-induced DNA lesions, including highly lethal DNA double-strand breaks (DSBs). Thus, LSCs and/or LPCs may be "addicted" to particular DNA repair mechanisms and targeting these pathways could sensitize LSCs to the lethal effect of unrepaired DSBs.

After the presentation given by Dr. T. Stoklosa several questions from the audience were asked and the discussion was continued after the session. This was an excellent opportunity to exchange knowledge and discus the results of our research with researchers from top Institutes and Universities.

